If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10c^2+14c-12=0
a = 10; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·10·(-12)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-26}{2*10}=\frac{-40}{20} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+26}{2*10}=\frac{12}{20} =3/5 $
| b−62=13 | | 5x-17=1232 | | P(–3)=x4–2x3–4x+4. | | 21/2=105/m | | g+4=98 | | 6/2=9/m | | u+74=87 | | 3y+4+7y=24 | | k6=7 | | 19-g;=15 | | P=(x5.5) | | 7-1=3x+1-1 | | 5x^2-9=2x-7^6 | | x-1.1=-3.8 | | 6x+6=4x+5 | | 5b+6+2=19 | | 16(v+1)-4v=3(4v+3)-12 | | 2495=3.14r^2 | | -1+5u=7u+3 | | g=18+1 | | w=8+-14 | | q=15+4 | | j+7=−12 | | m-6;m=18 | | 153=-9x | | 24.5=19.6t-4.9t^2 | | n=15+4 | | c+-8=6 | | s=14+6 | | 1/3x+20=25 | | .-43-4r=3(1-9r) | | -9+-8=v |